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Generation of dynamic structures in nonequilibrium reactive bilayers
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We present a nonequlibrium approach for the study of a flexible bilayer whose two components induce
distinct curvatures. In turn, the two components are interconverted by an externally promoted reaction. Phase
separation of the two species in the surface results in the growth of domains characterized by different local
composition and curvature modulations. This domain growth is limited by the effective mixing due to the
interconversion reaction, leading to a finite characteristic domain size. In addition to these effects, first intro-
duced in our earlier work [Phys. Rev. E 71, 051906 (2005)], the important new feature is the assumption that
the reactive process actively affects the local curvature of the bilayer. Specifically, we suggest that a force
energetically activated by external sources causes a modification of the shape of the membrane at the reaction
site. Our results show the appearance of a rich and robust dynamical phenomenology that includes the gen-
eration of traveling and/or oscillatory patterns. Linear stability analysis, amplitude equations, and numerical
simulations of the model kinetic equations confirm the occurrence of these spatiotemporal behaviors in non-

equilibrium reactive bilayers.
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I. INTRODUCTION

Due to hydrophobic repulsions, amphiphilic molecules
such as lipids spontaneously aggregate in water to form bi-
layer membranes. These bilayers typically exhibit an in-
plane fluidlike nature, and are highly flexible surfaces so
they can display a large variety of conformations. The ex-
perimental study of equilibrium lipid bilayers has attracted a
great deal of attention in recent decades [1,2]. Issues such as
membrane conformational behavior, shape fluctuations, fu-
sion and fission, and phase segregation in multicomponent
bilayers have been extensively investigated [1-3]. Among
many other manipulation techniques, the fabrication of syn-
thetic giant vesicles and planar lipid membranes [4] as well
as micropipet aspiration [5] have been used to perform these
studies, leading to a fairly detailed current understanding of
equilibrium membranes.

Parallel to the experimental advances, theoretical model-
ing of equilibrium flexible membranes has also come a long
way. Typical theoretical approaches are based on the search
for minimum-energy conformations according to the
Canham-Helfrich bending elasticity description [6,7] of a
tensionless membrane, plus (optionally) the corresponding
area-difference contributions for closed surfaces [8]. More
recently, it has been recognized that internal degrees of free-
dom such as chemical composition can crucially influence
the shape of the bilayer, especially when dealing with mul-
ticomponent membranes undergoing phase separation. In
particular, models containing a local coupling between com-
position and curvature have been developed [9-14], resulting
in an interesting outcome, namely, the appearance of phase
separating domains that grow and adopt distinct membrane
curvatures. This is understood as the initiation mechanism
for budding phenomena in real membranes. Kinetic mesos-
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copic schemes, Monte Carlo approaches, and a variety of
discrete dynamic algorithms have been proposed on this ba-
sis, and have mainly been devoted to the study of the equi-
librium behavior and the dynamics toward equilibrium of
flexible bilayers.

The ultimate motivation for the study of lipid bilayers lies
in their likeness to cell membranes. A biological membrane
is a complex mixture of lipids, sterols, and proteins that rep-
resents the main structural component of the cell architec-
ture. Rather than an inert static boundary, a membrane has to
be viewed as a dynamical surface directly and actively in-
volved in many biological cell processes [15]. In addition to
their compositional complexity, cell membranes are also con-
tinuously subjected to nonequilibrium driving forces, chemi-
cal gradients, and energy fluxes, so it should be recognized
that nonequilibrium behavior may underlie many aspects of
their dynamics [16—18]. Therefore, although experimental
and theoretical studies on thermally equilibrated membranes
have had considerable success and are a good starting point,
nonequilibrium approaches are fundamental for a more accu-
rate understanding of the dynamical properties of both natu-
ral membranes and synthetic lipid bilayers.

Excellent work on nonequilibrium lipid bilayers has re-
cently been presented by the experimental groups of Prost
and Ddobereiner. Prost et al. have studied the effects of active
proteins inserted in a vesicle membrane. Acting as ion pumps
externally activated by light, these proteins provide a non-
thermal energy source that directly affects membrane shape
behavior [19]. As an example of another nonequilibrium
source, Dobereiner ef al. investigated the morphological
transformations of a vesicle membrane due to a photoin-
duced chemical reaction that modifies the local lipid compo-
sition of the bilayer [20]. Some progress has also been made
on the modeling front. For example, parallel to their experi-
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mental findings, a novel nonequilibrium scheme has been
proposed by Prost et al. that successfully explains the ob-
served experimental phenomenology [21,22]. In addition to
this proposal, other nonequilibrium situations have been
modeled very recently, such as those of membranes confined
between parallel plates [23], membranes with active inclu-
sions [24], and bilayers near repulsive walls [25].

We are mainly interested in the nonequilibrium situation
proposed by Dobereiner et al., where the bilayer’s own lipid
constituents are chemically transformed, leading to changes
in the membrane curvature. The influence of lipid composi-
tion on the curvature of cell membranes has recently been
established in cell fusion processes where high-curvature lip-
ids play an important role [26]. Chemically induced lipid
modifications are also known to be responsible for mem-
brane shape transformations involved in nervous synaptic
processes such as the formation of microvesicles that release
the neurotransmitter to the gap between two nerve cells [27].
Furthermore, in addition to biological membranes, an under-
standing of the coupling between chemical reactions and the
interfacial curvature is essential in elucidating dynamical
processes in artificial bilayers that may be useful in nano-
technology applications. As an example, self-assembly tech-
niques based on biomineralization can lead to hierarchically
organized materials built from reactive amphiphilic inter-
faces [28].

Based on the nonequilibrium ingredients described above,
in a previous paper [29] we presented a model for a two-
component reactive membrane that exhibits a particular com-
positional and morphological organization. In that model, the
two lipid constituents have a distinctly different shape, so
that they are able to produce distinct curvatures in the mem-
brane. Moreover, they are assumed to be thermodynamically
immiscible, so they spontaneously induce the development
of phase separating domains. Additionally, an externally in-
duced reaction (promoted by a nonequilibrium source such
as a chemical flux, an applied light, etc.) interconverts the
two lipids. The combination of these ingredients leads to
stationary patterns involving heterogeneous modulations of
composition and curvature. The novelty of the resulting pat-
tern organization is that although stationary, the patterns are
generated in a nonequilibrium context, that is, they are ac-
tively maintained by the competition between thermody-
namic (equilibrium) phase separation and the environmen-
tally induced (nonequilibrium) reaction. At thermal
equilibrium, the low affinity between the two immiscible
components generates domains with a characteristic compo-
sition and curvature. In the absence of reaction, these do-
mains grow indefinitely and coalesce until complete segrega-
tion into two large domains is achieved. However, the
reactive process converts one lipid component into the other,
resulting in a large-scale mixing mechanism that halts the
growth of the segregated structures when the mixing action
balances the short-scale ordering effect of phase separation.
This balance leads to a stationary state with patterns of a
finite size.

In our previous model [29], we assumed that the nonther-
mal energy contribution that promoted the lipid interconver-
sion reaction simply dissipates to the medium. In this paper,
we generalize our original model to the case where such an
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energetic process directly alters the membrane shape by ex-
erting local forces on it, that is, the induced reactive process
locally “kicks” the membrane. Conformational changes of
the membrane constituents due to the reaction can reason-
ably be expected to have mechanical effects on the mem-
brane. We model this effect in a very generic way, and will
demonstrate that the inclusion of this new ingredient is es-
sential for the generation of dynamic spatial organization. As
a typical feature of soft-matter systems, robust spatiotempo-
ral phenomena such as those displayed in this paper are in-
teresting in their applicability to real bilayer membranes.

Although our ideas are inspired by phenomena observed
in real cellular systems, we hasten to disclaim a direct anal-
ogy between our model and in vivo systems which are far
more complex than our stripped model. We only wish to
suggest that the mechanisms proposed herein might play a
role in real membranes in which the energy sources for the
local membrane-shape-altering processes might include ATP
consumption, the asborption of light, or any of a number of
other possible energy-providing mechanisms. We point out
here and again later in the paper that the spatiotemporal
structures of interest require parameters that constrain the
range of applicability of the model. In particular, we will see
that elastic properties (bending rigidity) play a central role,
and that the most likely candidates for the observation of our
predictions due to their flexibility are in vitro lipid bilayers
formed from single- and/or short-chain lipid surfactants, es-
pecially those composed of surfactants of rather distinct
shapes that are interconverted by a reactive process that can
be controlled experimentally. We discuss these and other
possibilities for experimental realization later in the paper.

The outline of this paper is as follows. Section II presents
our basic mesoscopic free-energy description as well as the
derivation of the kinetic equations for the composition and
curvature variables in the proposed model. The linear stabil-
ity analysis and the amplitude equation analysis are pre-
sented in Sec. III, with the details of the derivation of the
latter relegated to the Appendix. Organized spatiotemporal
behaviors are predicted in some regions of parameter space
provided that the parameter describing the activity of the
reactive process on the membrane dynamics is sufficiently
large. In good agreement with the analytical predictions, nu-
merical simulations exhibiting traveling and/or oscillating
domains are shown in Sec. I'V. Finally, in Sec. V we summa-
rize the main conclusions of this paper.

II. THE MODEL

In our earlier work, we considered the simplest scenario
where one layer of the membrane (say the outer one) was
composed of two differently shaped lipids A and B, whereas
the other layer was composed of a single component without
any curvature effect. We also disregarded any lipid flip-flop
exchange between the inner and outer layers. Under these
assumptions, we modeled the properties of the nonactive
membrane as a two-dimensional surface characterized by the
local concentration difference ¢ between the A and B com-
ponents and the local extrinsic curvature H of the surface. At
this point, we do not specifically identify the components A

051921-2



GENERATION OF DYNAMIC STRUCTURES IN...

and B in any further detail since this is to be seen as a
schematic and highly streamlined representation of any num-
ber of possible realizations. Indeed, A and B need not even
be single compounds; for example, A may be a group of
lipids or biomolecules some of which induce a particular
curvature, while B may be another group that induces a dif-
ferent curvature. A and B could be the isomers of an am-
phiphillic azobenzene derivative, or groups of lipids as in
Fig. 2 in [27] or those suggested in [26], or simply a given
lipid with its polar head more or less charged as in the ex-
periments in [20].

The free-energy functional in terms of the two order pa-
rameters was assumed to be

F= f dxdy[— §¢2 + 4§¢4+ %y|v¢|2 + g(Vzh — pHy)? |

(1)

The first three terms correspond to the typical Ginzburg-
Landau expansion that leads to phase separation when a, /3,
and ‘y are all positive, with an equilibrium concentration dif-
ference ¢p.q==\a/B and a typical interface length {= vyl a.
When « is negative, the components are completely mis-
cible, leading to a homogeneous state. The last term is the
elastic energy contribution due to the rigidity of the mem-
brane, and « is the bending rigidity modulus. For simplicity,
we have assumed that the spontaneous (equilibrium) curva-
ture Hyy( ), which reflects the shape asymmetry between the
two lipid components, is linear in the order parameter, Hy,
= ¢H,. In the Monge parametrization [30], a deformable sur-
face is described by (x,y,h(x,y)), where h(x,y) is the dis-
placement (height) field for the local separation from the flat
conformation. This representation is valid for surfaces that
are nearly flat with only gradual variations of 4, and allows
the approximation H= V>h that we have incorporated in the
free-energy functional. For self-assembled free membranes,
the surface tension contribution [(0/2)|VA|?] in the free en-
ergy can be neglected, and we have not included it in Eq. (1).

The kinetics of ¢ and & are assumed to be driven by the
free-energy functional, and by the chemical reaction that in-
terconverts the two lipid components, A= B. The effect of
the reaction is twofold: it affects the concentration difference
order parameter ¢, and it also affects the shape of the mem-
brane. This last effect is our new contribution in this paper.
The kinetics is thus a generalized version of that introduced
in [29],

W E}

Py =DV L(ﬁ -T(op— ), (2a)
oh OF
E=—AE+F(¢—¢0)§- (2b)

The concentration difference ¢ follows a conserved scheme
[31] with diffusion coefficient D, augmented by the reaction
contributions. The rate parameter I'=k, +k_ and the station-
ary concentration difference parameter ¢,=(k_—k,)/(k,
+k_) are determined by the forward and backward reaction
rate constants k, and k_. Note that we have assumed local
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FIG. 1. Schematic representation of the model. Placed in one of
the layers of the membrane, the two constituents A and B induce
positive and negative curvatures, respectively (dashed lines). The
species are interconverted by means of a nonequilibrium reaction:
k, and k_ are the forward and backward rate constants, respectively.
The mechanical effect of the reactive process on the membrane
shape is illustrated by the hollow arrows.

overdamped relaxational dynamics for the membrane height,
that is, Rouse-like dynamics, where A denotes a mobility
parameter proportional to the inverse of the typical relax-
ation time 7;,. This approximation is only valid when the
membrane is immersed in a high viscosity medium and/or
when the membrane is highly permeable [32]. When hydro-
dynamic effects cannot be neglected, a more realistic, albeit
complex, description of the membrane dynamics (Zimm-like
dynamics) is required, where inertial effects and a space-
dependent relaxation parameter are in order [33].

The last term in Eq. (2b) is based on the following hy-
pothesis. The reaction that interconverts A and B can be un-
derstood as an isomerization-like chemical transformation,
involving a strong modification in the shape of the mem-
brane constituents. This process implies the displacement of
parts of these molecules that could have a mechanical effect
on the local membrane shape. If additionally the process is
strongly energetically activated by an external energy source,
it might exert a local force on the membrane. A simplifying
approximation is to assume that the forward and backward
reactions exert opposite forces on the membrane. These
forces are assumed to act locally for a negligible period of
time (the time needed to complete the reaction is much
shorter than any other time scale of the system), in the same
direction as the preferred curvature of the reaction product
component, that is, positive (outwards) for A— B and nega-
tive (inwards) for B—A, see Fig. 1. This is modeled in a
generic way [34] by the last term in the membrane height
kinetic equation, where ¢ is a parameter accounting for the
strength of the effect of the reaction on the shape of the
membrane. Here we take the parameter £ to have the same
sign as H, (in Fig. 1 both are positive). Active proteins are
known to act as force centers when inserted in lipid bilayers
[19], and other experimental studies [17,18] also provide evi-
dence that reactive processes may locally modify the mem-
brane shape in red blood cells. However, we must recognize
ours as an experimentally verifiable conjecture of what might
happen at the lipid component level since the cited experi-
mental evidence only corresponds to chemical processes in-
volving much larger molecules (proteins).

We write Egs. (2a) and (2b) in detail in terms of dimen-
sionless parameters where the energy is measured in units of
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the thermal energy kg7, the time in units of 7, and length in
units of VD,

L (- )V + 3B+ 6BV
~ WV - kHV*h=T($~ ¢y), (3a)
oh
O KVh+ kHV2h+T (= o)E. (3b)

at

In the next two sections, we show analytically and con-
firm numerically that the new force term can have profound
effects on the instability and pattern formation properties of
the model. In particular, this term may lead to dynamical
patterns, whereas in its absence only stationary patterns are
possible.

III. ANALYTICAL TREATMENTS

The stationary uniform state corresponds to ¢=¢, and

arbitrary /. The linear stability of these uniform solutions is
tested by adding small plane-wave perturbations of
wave number ¢ to the uniform state and linearizing Egs. (3a)
and (3b) in these perturbations. This procedure leads to the
2 X2 linearization matrix £ with the following coefficients:

Ly =-q[(kHy— a+3B¢y) + v¢*]1 - T,
L=~ KHOCI4’
Ly =- kHyq* +T¢,

L=~ KCI4- (4)

The eigenvalues w, of the Jacobian associated with the ma-
trix £ correspond to the linear growth rates of the perturba-
tions.

The solutions of the eigenvalue problem are given by
w,=1/2(Tt L]+ A[L]), where A[L]=Tr{L]*~4 det[L]. At
the instability boundary, Re(w,) vanishes for one finite wave
number that is defined as the first unstable mode. If the
imaginary part of w, is not zero at this wave number, we
have a wave bifurcation. The condition for this bifurcation is
obtained by requiring Tr{ £]=0 and A[£]<0. If the imagi-
nary part of the growth rate is zero, one has a Turing-like
bifurcation. The condition for this bifurcation is det[ £]=0.

In the absence of the interconversion reaction, it is of
course well known that immiscibility leads to complete
phase separation. This occurs because a continuous range of
modes starting from ¢=0 is unstable, and phase separation
does not stop until there is complete segregation into two
large domains. In our previous work [29], we showed that
the interconversion reaction provides a mixing mechanism
that stabilizes the longest wavelength modes. If the reaction
rate parameter I" is sufficiently large,
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FIG. 2. Phase diagram for the case of immiscible components in
the plane (a,I") for y=1 and ¢y=0 when there is no force on the
membrane caused by the interconversion reaction. (From [29]).

(a—3B¢p)°

F>T ==
Y

(5)
then mixing is complete, the instability disappears, and the
bilayer becomes stable and essentially flat. If I'<<T";, the re-
action no longer stabilizes all modes, but it does stabilize the
longest wave-vector modes. The first mode to become un-

stable is
a-3Bd; r
== =\ (6)
2y Y

The longest wavelength unstable mode now lies at the finite
value

2
Gnin= a3 L\/(oz— 3B¢) =4 (7
2y 2y
This means that the phase separation process stops when the
separated regimes are of characteristic size ~¢: . The pat-
terns are Turing-like (stationary) because the imaginary part
of the growth rate is zero at the bifurcation point. A typical
phase diagram found earlier for this case is shown in Fig. 2.
Note that the pattern size is independent of curvature param-
eters. Curvature reduces the unstable mode growth rates (see
the £=0 curves in Fig. 3), but without changing either the
characteristic size of the patterns or the marginal condition
(5). The effect of curvature is thus restricted to the kinetics of
the phase separation process, as has been extensively ana-
lyzed in [29].

The new questions of interest here are the consequences
of the reaction-shape coupling in the kinetic equations. To
place the analytic results obtained in this section in context,
we anticipate the numerical results of the next section and
exhibit two different views of a typical phase diagram in Fig.
4. Regime III is the stable regime where the mixing due to
the interconversion is sufficiently strong to produce a homo-
geneous phase. Here “sufficiently strong” depends on the
value of the parameter & Beyond this stable regime, there are
now two instability regimes. One, called region II in the
diagrams, is the Turing instability regime leading to station-
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————— I=0.14, £=0
——— I=0.14,&=5

0.2 r

0 0.5 1

FIG. 3. Dispersion relation functions w, for different values of I
and & The other parameters are held fixed at a=vy=1, ¢y=0,
k=0.5, and Hy=0.2. Only the case with =5 has a nonzero imagi-
nary part of the dispersion relation (plotted with symbols).

ary nonequilibrium patterns, that is, the same sorts of pat-
terns observed in the absence of the reaction-shape coupling
(upper region of Fig. 2) [29]. The condition for the Turing-
like bifurcation, det[£]=0, obtained from the linear stability
conditions now is I'<I',, with

2
//”
"1
el
/’/'/
1 /
o]
111
0.5
0
No Phase Segregation (lipid miscibility)
0 0.1 0.2 0.3 0.4
r
10
8 I
[
o II1
4
I
2
0
0 0.1 0.2 0.3 0.4
T

FIG. 4. Phase diagrams in the planes («,I") for £=5 and (&,T)
for a=1. The other parameter values are y=1, k=0.5, Hy=0.2, and
¢o=0. The boundaries in these diagrams have been calculated nu-
merically (see Sec. IV).
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_(a=3p¢)
4/ +Hod)’

This is the curve bounding region II in the figure. The first
Turing-like unstable mode occurs at

£= a—23ﬁ¢3 _ L+ Hod) o)
Y Y

The new regime, region I, is one in which one observes
dynamical (i.e., time-dependent) patterns. Provided the reac-
tion parameter is sufficiently small and the reaction-shape
coupling parameter is sufficiently large, the linear stability
analysis in this regime leads to wave bifurcation solutions,
Tr{£]=0 and A[L]<0. The explicit conditions for these
time-dependent solutions obtained from the linear stability
conditions are I'<I';, with

_(a— 3B¢; — kHy)?

(8)

2

I'y= , 10
0 2+ %) (10)
and &> &, with
2
K4o vp2 . 2
=——(H, . 11
& FHO( o+ 4q0) (11)

The first unstable mode in the above expression is now

,  a-3pB¢; - kH; Ty
qo= = ) (12)
2(y+ k) Y+ K

The curves bounding region I in Fig. 4 arise from these ex-
pressions. A typical dispersion relation function w(g) in this
regime is shown in Fig. 3. The function now has a nonzero
imaginary part as well as a real part, as appropriate for spa-
tiotemporal pattern formation. Typical spatiotemporal field
configurations in the unstable regions of the phase diagram
can only be found numerically. We do so in the next section.

Before doing so, however, we can go a step further in the
analytic approach to the problem by introducing a weakly
nonlinear analysis based on the amplitude equation formal-
ism. Such a nonlinear expansion is valid near the bifurcation
threshold to pattern formation and sheds light on the ex-
pected pattern configurations and their dynamical properties.
For simplicity, we restrict the calculation of the amplitude
equations to one spatial dimension. Nonetheless, we can
readily deduce the possible arrangements in two dimensions
by an appropriate interpretion of the coupling terms.

The details of the derivation of the amplitude equations
are presented in the Appendix. The analysis reveals that a
solution for Eqgs. (3a) and (3b) near the bifurcation to pattern
formation reads

B(x.1) = o + A, (x.1)expli(gox + wot) | + A_(x,1)
Xexpli(gox — wot)] + c.c.,

(13a)

h(x,1) = B, (x,t)exp[i(gox + wot) ] + B_(x,0)expli(gox — wyt) ]

+c.c., (13b)

where c.c. stands for the complex conjugate, w0:|Im(wq0)
and the amplitudes A_(x,7) and B.(x,?) satisfy the equations

s
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JA. 3845l —T)
= =(T,-1)A, - —2>——~
P (Fy=T)A. r,
X<1 _ 24Bbai(8xqp + iwo))
C1
XALJALP = A JA=? + BBH: + Hik + 6y4% - )
PA. , B,
X?+6H0Kq0 PR (14a)
JB PA #B
== _ETy-DA, + Hyxk—— + 6kg>——=, (14b
P Ery-TA, 0K~ 3 TOKG 5 (14b)
where

c1 =8xkgi[To(1 + Hof) + 443385 + 4vg5— )] - 209,
—iwy{ly + 4q3[33¢% + H%K —a+ 4q3(y+ )1},

(15a)
_ 6Bg3(Iy=T)
Cy= FO
><(1 _ 24Bbigs )
2 2 2 N
Lo(1 + Hyé) + 4q5(3Bdy + 4vg;— @)
(15b)

Note that no pattern develops if I'>T since the amplitudes
then decay with time, A,, B,— 0. Note also the coupling
term between the rightward, A_, and leftward, A,, traveling
waves. This interaction is responsible for generating either
standing or traveling waves in the membrane dynamics.
Standing waves appear as a result of a kink-antikink dynam-

PHYSICAL REVIEW E 72, 051921 (2005)

FIG. 5. Spatiotemporal behavior for the case
of an unstable membrane in region I of the phase
diagram Fig. 4 and the following set of param-
eters: a=B=vy=1, ¢y=0, «=0.5, Hy=02, T’
=0.14, and £=5 (dashed curve in Fig. 3). The two
upper panels correspond to the ¢- and A-field dis-
tributions at r=15000, once the structures are ro-
bust. The stripes travel from left to right at con-
stant velocity. In the third panel, we plot the
temporal evolution (horizontal axis) of a one-
dimensional cross-section ¢ profile (vertical axis)
at y=50, starting at r=15000 until r=19000. In
the fourth panel, the corresponding £ profile
(horizontal axis) is plotted against time (down-
ward below sheet axis), starting at #=15000 until
t=15500. Darker (lighter) regions are richer in
the A(B) lipid in the concentration snapshots, and
some exaggeration along the vertical direction
has been applied to the height plots.

ics where both waves have the same amplitude, A_=A,.
Traveling waves require these amplitudes to be different.
Therefore, if the coefficient ¢, of this interaction term is
small (strictly speaking, zero) we expect the two amplitudes
to be equal, so that

P(x,1) = gy + 4A ,(x,1)cos(ggx)cos(wyt) (16a)

h(x,t) = 4B, (x,t)cos(ggx)cos(wyt), (16b)

that is, the solution is a standing wave. On the other hand,
if ¢, is not zero, a traveling wave appears. Observe that if
¢o=0, that is, if the composition of the membrane is 50%
lipid A and 50% lipid B, then the A, < A_ interaction term is
always relevant and no standing waves are possible. This
scenario is confirmed by the numerical simulations described
in the next section (cf. Figs. 5 and 6, where we see a
composition-curvature traveling wave in the membrane; for
the parameters in that figure, ¢,=0.25). On the other hand,
this restriction does not apply if the membrane composition
is such that ¢y # 0 (cf. Figs. 7 and 8, where ¢,=0.14 and
Ccy= 1072; the simulations show that in those cases there is a
standing oscillatory contribution to the pattern). As for the
different spatial configurations, one obtains either rolls or
hexagons depending on the symmetries of the system. Thus,
note that in Egs. (3a) and (3b) the inversion symmetry

b——-¢d, h——-h (17)

is satisfied only if ¢y=0 and in that case roll-like arrange-
ments are obtained. On the other hand, if ¢,# 0 there is no
inversion symmetry, and the resulting structures are expected
to be hexagonal.
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X

FIG. 6. ¢ and h profiles for the case in Fig. 5 at a given time
t=18000. The arrow represents the direction of propagation of the
traveling pattern.

IV. NUMERICAL RESULTS

Representative numerical results are presented in this sec-
tion, showing good agreement with the predictions of the
linear stability and amplitude equation analyses. We numeri-
cally solve Egs. (3a) and (3b) in a two-dimensional square
lattice of 100X 100 sites with a mesh size Ax=1 and peri-
odic boundary conditions. The spatial derivatives are calcu-
lated by means of a simple centered scheme, and a first-order
Euler algorithm with time step Az=10"* is used for the tem-
poral integration. These coordinate and time steps insure
good numerical accuracy. Simulations are started from a
slightly randomly perturbed homogeneous distribution

&(r)= =y and h(r)=h=0. In this section, we present nu-
merical results that correspond to highly immiscible compo-
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nents (deep quench, a=1 and B=1, leading to an equilibrium
value of ¢,==+1), and an 1nterface thickness of the order of
the space discretization ({=1, which leads to y=1). The
bending rigidity modulus is taken equal to 0.5 (in units of
kgT), and very different shapes are implemented for the two
constituents by setting Hy=0.2.

When dealing with mesosopic or coarse-grained modeling
schemes, one has to be concerned about the applicability of
the results. The limit on the predictive power of these models
is mainly determined by the identification of the correct time,
length, and energy scales accessible to the experiments. In
our case, we have adimensionalized the kinetic equations in
order to have D=A=kzT=1, so we can return dimensions to
these equations by choosing typical values for these param-
eters. The diffusion coeficient is known to be in the range
10771078 cm?/s (for lipids in a liquid-disordered phase
membrane [15]). In the absence of the nonlinear and me-
chanical effects considered in this paper, solvent hydrody-
namic effects (Zimm dynamics) [3] can be incorporated with
a renormalized height mobility A=(4uq)™! in Eq. (2b) in
Fourier space [32]. Here u stands for the solvent kinematic
viscosity, which is 1cp for water at 20 °C. For k=0.5kpT, the
linear stability analysis shows typical unstable modes at
q=q,=0.5, which corresponds to a pattern size in the range
of 2—-20um. Such a size may be accessible in experiments
on giant vesicles and planar bilayers. However, when me-
chanical effects are included, a more elaborate analysis such
as that provided by dynamical renormalization methods [32]
is in order. A simple and plausible hypothesis might be to
include such effects by simply renormalizing both A and £ in
Eq. (2b), both with a 1/g decay in Fourier space since one
might expect a nonlocal viscous kernel to decay as a power
law with distance [33]. In any case, a more detailed consid-
eration of this issue is beyond the scope of this work.

FIG. 7. Spatiotemporal behavior for the same
case as in Fig. 5 except for ¢po=-0.14 (still in
region I). The snapshots correspond to t=22500
and the temporal profile evolutions go from this
time up to r=26500 for ¢ and to r=23000 for A.
The same panel organization and specifications as
in Fig. 5 apply. Budlike curvature domains
oscillate.
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However, in order to accurately delimit the range of ap-
plicability of our model, it is useful to add some comments
regarding the value of . The elastic properties, and thus the
bending rigidity, of lipid bilayers are strongly determined by
the size, shape, and molecular elasticity of their constituents.
Membranes composed of phospholipids (which have two hy-
drophobic chains) are characterized by a bending rigidity of
the order of tens of kgzT [35]. Cell membranes containing
large molar fractions of cholesterol (rather rigid molecules)
display even higher rigidities [16]. In our model, the typical
sizes of the predicted dynamical patterns emerging from a
wave instability for such large values of « exceed the experi-
mentally accessible sizes. Moreover, for «=10, wavelike
unstable modes are observed to be suppressed at long times
by the other existing Turing-like unstable modes, so that only
stationary structures are asymptotically generated in this pa-
rameter region. However, single- and/or short-chain lipid
surfactants are known to form much more flexible bilayers,
with bending rigidities of the order of kzT or even less [36].
Furthermore, recent theoretical models [37] show how bilay-
ers composed of surfactants of rather distinct shapes (as in
our case) may exhibit smaller rigidities than one-component
membranes. This, therefore, delimits the range of applicabil-
ity of the model results in this paper.

Our quantitative assigment of ¢ has been made with the
energetic feasibility of a number of external sources in mind.
To see this, note that the characteristic time for a single re-
active event is of order 1/I'. During this time interval, the
change in the height of the membrane due to the contribution
of the reactive term is of order £ [see Eq. (2b); ¢— ¢ is of
O(1)]. Moreover, the local energetic “cost” of such a height
increase due to the reactive term is of order 2x&%/(Ax)? [see
Eq. (1)]. In most of our simulations, we have used £=5 (in
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FIG. 8. Spatiotemporal behavior for the same
case as in Fig. 5 except for ¢y=—0.14 and £=3
(still in region I). In the upper panels, the drop-
letlike structures move from the upper-left corner
to the lower-right one at constant velocity, while
they oscillate. The snapshots correspond to
t=18000 and the temporal profile evolutions go
from this time up to r=22000 for ¢, and to
t=18500 for h. The same panel organization and
specifications as in Fig. 5 apply.

simulation length units), which, for k=0.5, corresponds to an
energy cost of order 25 (in units of kzT). The dephosphory-
lation of an ATP releases about 50 kJ/mol or 10~'°J/ATP,
which at room temperature is precisely of order 25k,T. If the
energy source is light, the power required to produce 25kzT
within a time interval of order I'"! for I'=0.14 as used in our
simulations is only approximately 0.3X107® mW/cm?,
which is much lower than the power produced by typical
commercial light sources used, for example, in photosensi-
tive Langmuir monolayer experiments. While some of the
energy provided by these external sources (ATP, light, etc.)
would be used for processes other than the purely elastic
motion of the membrane, including dissipation into the ther-
mal surroundings and the movement of other masses, this
order-of-magnitude estimate shows that the mechanism is
feasible and provides a basis for the value of the parameter &
chosen for our simulations.

For a highly flexible bilayer, typical phase diagrams are
those of Fig. 4. As noted earlier, region I corresponds to a
regime where at least one of the unstable modes has nonzero
imaginary part, so both types of instability are present. Re-
gion II is the unstable phase also present in Fig. 2. Here, the
unstable modes have no imaginary parts, so that stationary
finite-sized patterns are predicted. In region III, there are no
unstable modes (stable phase). Here we have exhibit spa-
tiotemporal patterns associated with the new region I.

The nature of the spatiotemporal patterns is determined by
the value of ¢, and by the associated relative magnitudes of
the amplitudes of waves traveling in different directions.
These assertions are supported by the amplitude equation
analysis of the previous section. Thus, for a critical quench
(¢p=0), the system typically displays some transients with
domains that travel in different directions until they organize
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into a coherent train of traveling stripes. The post-transient
spatiotemporal behavior is described in the different panels
in Fig. 5. We plot the concentration and height fields (upper
panels), and one-dimensional cross sections showing the
temporal evolution, for both order parameters. The traveling
waves are consistent with the predictions of the amplitude
equation analysis. Numerical profiles at a given post-
transient stage reveal the mechanism that leads to the motion
of the generated spatial structures. In Fig. 6, we observe that
¢ and h profiles are slightly displaced, the field ¢ being
ahead in the direction of propagation. That there is such a
phase difference between the two fields is consistent with the
appearance of the contribution with an imaginary coefficient
on the right-hand side of Eq. (14b).

Off-critical quenches (¢,=-0.14) display different spatial
and temporal behaviors, again consistent with the amplitude
equation results. As before, we first observe transients, but
now involving concentration droplets and budlike surface de-
formations. The fields settle into an oscillating pattern of
buds rich in the minority species and whose geometry de-
pends on the value of the parameter ¢ that measures the
mechanical effect of the reaction on the shape of the mem-
brane. This behavior is shown in Fig. 7. For =5, a spatial
Fourier transform of the pattern indicates clear square sym-
metry. For £€=3, the domains are rather hexagonal and they
oscillate as well as move in one direction, as shown in Fig. 8.

V. CONCLUSIONS

In a previous model for a flexible reactive bilayer com-
posed of two differently shaped lipids, we demonstrated the
occurrence of stationary finite-sized domains of composition
and curvature as a result of the competition between thermo-
dynamic phase segregation and a nonequilibrium reaction
[29]. A generalization of the model that includes the local
effect of the reaction on the membrane shape has been pre-
sented here. We have shown how the mechanical influence of
the reactive process on the membrane may lead to the for-
mation of spatiotemporal structures. The linear stability
analysis of the model equations shows the existence of a
wave instability for sufficiently large reaction-shape cou-
pling. A weakly nonlinear analysis based on the amplitude
equation formalism provides insight into the spatial and tem-
poral symmetries of the emerging patterns. Correspondingly,
numerical simulations display the spontaneous generation of
traveling lamelar phases and oscillating or moving buds,
showing an important potential for the formation of spa-
tiotemporal patterns in deformable nonequilibrium reactive
lipid membranes.

This extension of the model should be considered as a
formal issue in reactive deformable surfaces. However, we
believe that experimental work on giant vesicles and on pla-
nar membranes can be designed to qualitatively capture the
spatiotemporal phenomenology obtained in our model.
Azobenzene derivatives, which are also known to display
dynamical organization in nonequilibrium Langmuir mono-
layers [38], may be suitable compounds to test our predic-
tions since their shapes can be strongly modified by means of
well-known (externally controlled) photoisomerization reac-
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tions [39], and the resulting isomers normally exhibit phase
separation.

Finally, we note that it would be interesting to study the
crossover between Rouse and Zimm dynamics in our model
system so as to elucidate how the different parameters are
renormalized due to solvent hydrodynamic effects, and to
clarify the resulting consequences for the pattern formation
mechanism proposed herein. Such a study has been carried
out for tethered membranes, where different coarsening ex-
ponents are found [32,33].
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APPENDIX: DERIVATION OF THE AMPLITUDE
EQUATIONS

For convenience of notation, we rewrite the one-
dimensional version of the model equations (3a) and (3b) for
reactive membranes in terms of the shifted field variable
@=¢— ¢, and the control parameter e=(I",—1I")/I", that ac-
counts for the “distance” to the threshold of the bifurcation
to pattern formation so that a pattern develops if £ >0,

@, = (KHy — @)@+ 38(0 + o) @ + 68(0 + ) (@)

= YPrxxx — KHOhxxxx - 1—‘0(1 - 8)907 (Ala)

ht= - Khxxxx + KHOQDxx + gl—‘O(1 - S)QD- (Alb)

The subscripts indicate partial derivatives. The homogeneous
state is @=0 and arbitrary h=h. With no loss of generality,
we take h=0.

Slightly above the bifurcation to pattern formation, the

following expansion holds (see [29,41] and references
therein):

@=> ", (A2a)
n=1
h= >, &"h™, (A2b)

n=1

and a separation of spatial scales can be implemented be-
tween the most unstable mode (fast growth), g, and the rest
of the modes within the unstable band (slower growth). In
terms of the control parameter, we let X=¢!’x denote the
spatial modulation scale of the slow modes and 7=et the
associated time scale. The separation of scales between the
fastest growing mode and the slower modes can be imple-
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mented in Egs. (Ala) and (A1b) by expanding the spatial and
temporal derivatives according to the chain rule so that
d,— d,+&'"2dy and d,— d,+edy. Implementation of this scale
separation and substitution of Egs. (A2a) and (A2b) into Egs.
(Ala) and (A1D) leads to a rather cumbersome expansion in
terms of £. The lowest-order contribution is of order £'/?, and

balancing all terms of this order gives
(3Be5+ Hik— @)@l — yeln, — Tog) = Howh'l) — ¢!V =0,

(A3a)

§F0<P(l)+H0K<PXX Khxgcx h§1)=0. (A3b)

Equations (A3a) and (A3b) are in fact simply the linearized
versions of Egs. (Ala) and (A1b). With the definition of the
linear operator [, with elements

& A d
Ly =GB+ Hok—a)— —y— —Tg— —,
11 (,3¢0 0K a)axz 70x4 0 P
A
L]z——Hng,
&
"121 = gr() + H()Kﬁ,

Egs. (A3a) and (A3b) can trivially be written as Ly,;=0,
where (x,)"=(¢™,h™).

The next order of the expansion gives us terms of O(g)
and yields Ly,=n({eM;h"M}), where b= (44,4, and

1,0(“)— 6,(3(1)0[(@(1 2+ (1><pxx]+2(a 3845 - Hp )<P(l)

+ 4')/(,0)(63)( + 4H0Kh(1>

xxxX

¥ =2(~ Hyg'y) +2h'Y)

xxxX/*

At order £¥? we get LX3 l//3({(p(1) @ h, h?)}), where the
components of 7 =(z,/1 ,1,03 b)) are given by

# = o TV - 680 eVl + 26 (e{) + ¢?)]
+(a— Ha) (@iy+202) = 3B{ (e + 202) + oV

X[(eM)? + 20T + 200 V(200 + ¢}

+29(3 @xxxx + 2‘P§£cx) +2H, OK(3h%(X + Zh,gch )

) =)+ o) + k2030 ey + 2080
~ Ho(eit +2¢3)]-

We could continue up to any order with the expansion.
However, at order 2 we are able to extract a closed evolu-
tion equation for the amplitudes of the pattern, as shown
below, and we therefore stop at this order. Note that beyond
order &2, which corresponds to the linear problem, in all
cases we obtain a nonhomogeneous equation, such that at
order "
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(1) (1)

x.= ({0 LAY (A4)

At order ! the problem is homogeneous and, with appro-
priate boundary conditions, we can write the solution as

eV = A, (X, T)e @0 +e) 4 A, (X, T)e 900 4 cc.,
(A5a)

RV = B\, (X, T)e!90 o) 4 B, (X,T)e' @09 1 c.c.,
(A5b)

where c.c. stands for the complex conjugate and
wo=[Im(w, )|. However, the amplitudes A, and B, are un-
determined at this point. As mentioned above, the subsequent
orders are no longer homogeneous and therefore the exis-
tence of an analytical solution cannot be ensured. However,
we can enforce solvability by evoking the Fredholm alterna-
tive theorem [40]. In our case, the application of the theorem
simply states, as a recipe, that for Eqs. (A4) to have a solu-
tion, the functions #, cannot contain the fundamental mode
exp[£(igox+ wyt)]. In other words, the particular solutions of
the nonhomogeneous problem are orthogonal to the solutions
of the homogeneous problem. Thus, by substituting the solu-
tions (A5a) and (A5b) into the next order of the hierarchy
and imposing the solvability condition, we obtain the follow-
ing particular solution:

@ = crdAL(X, T) P+ 4 2l A1-(X, T) e o)
+03,A 1L (X, DA (X, T)e* 0" + c.c.,

¢

W = cy{[A) (X T) Peloren) £ [A ) (X,T)]e* 0o}
+ AL (X, DA (X, T)e* 40" 4 c.c.,
where
c111um

©~ “den’
Clcp

1

= [12Bog5(8 Ky +iwp)],
c](Pn ={8H,kqg(4Hyrqy —Toé) — (8 kg + iwp)
X[To+ 44538 + Hyk + 4yqs— @) + 2iwg]},

[12B¢0q3(8 kg — iwy)]

== 5
¢ C

(&)

o 249045
T o1+ Hod) + 400 3B +4ygi— @)

. _ [6Buai(= €+ 4Horqp)]
1h — * 5
C
3Boqy(€Ly — 4Hokqg)
2kqo[To(1 + Hod) + 4q3(3 85+ 4va5— )]’

Cop=—
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¢ =8kq[To(1 + Hyé) + 4¢3 (3 B4 + 4yqh — a)] — 2w}
—iwy{l'y + 4q(2)[3,8¢(2) + H(Z)K —-a+ 4qé()/+ © 1},

and ¢” is the complex conjugate of ¢. The values of A, and
B, cannot be determined at this order either. However, at
order £¥? the Fredholm theorem provides closed equations

PHYSICAL REVIEW E 72, 051921 (2005)

for the conditions that must be satisfied by these amplitudes.
These conditions are the amplitude equations for our pattern
forming system, and are given in terms of the original vari-
ables x and 7 in Egs. (14a) and (14b). In those equations, the
“1” in the subscript has been dropped for economy of nota-
tion.
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